6. Referências bibliográficas

ADLAND, Roar; STRANDENES, Siri P.. A discrete-time stochastic partial equilibrium model of the spot freight market. Discussion paper, March 2004.

AMBIENTE BRASIL, *Principais Acidentes da Indústria Petrolífera no Mundo*. Disponível em www.ambientebrasil.com.br>. Acesso em 23 outubro 2007.

ASBA. Association of Ship Brokers and Agents. 510 Sylvan Avenue, Suite 201 Eaglewood Cliffs, NJ 07632, USA. Disponível em <www.asba.org> . Acesso em 26 novembro 2007`

BAIDYA, T. K. N., AIUBE, F. A. L. e MENDES, M. R. da C.. *Introdução à Microeconomia*, Rio de Janeiro: Papel Virtual, 2004.

BARTLETT, M. S.. On the Theoretical Specification of Sampling Properties of Autocorrelated Time Series, Journal of the Royal Statistical Society, Series B, vol. 27, 1946, pp. 27-41.

BEENSTOCK, Michael; VERGOTTIS, Andreas. An Econometric Model of the World Tanker Market. Artigo em Journal of Transport Economics and Policy, September 1989.

BRITISH PETROLEUM, "BP statistical review of world energy – 2007 June", BP p.l.c., 1 St Jame's Square, London, 2007. Disponível em <www.bp.com>. Acesso em 13 novembro 2007.

BIMCO. *Baltic and International Maritime Council*. Bagvaerdvej, 161 2880 Bagsvaerd, Denmark. Disponível em <www.bimco.org> . Acesso em 26 novembro 2007.

CLARKSONS SHIPPING INTELLIGENCE NETWORK 2005. Disponível em www.clarksons.net. Acesso em 19 agosto 2007.

COLLYER, Marco Antônio; COLLYER, Wesley O. Dicionário de Comércio Marítimo: Termos e abreviaturas usadas no comércio marítimo internacional. 3ª ed Rio de Janeiro: Editora Lutécia, 2002.

COSTA NETO, Pedro Luiz de Oliveira. *Estatística*. 2ª edição, São Paulo: Editora Edgard Blücher Ltda, 2002.

EIA, *Energy Information Administration*. 1000 Independence Ave, SW Washington, DC 20585. Disponível em <www.eia.doe.gov>. Acesso em 01 dezembro 2007.

FERNANDES, Paulo Campos; LEITÃO, Walter de Sá. *Contratos de Afretamento à Luz dos Direitos Inglês e Brasileiro*. 1ª edição, Rio de Janeiro: Editora Renovar, 2007.

GALTON, F. Co-relations and their measurement, chiefly from anthropometric data. Paper, Journal Proceedings of the Royal Society, 1888.

GLEN, M. Owen; MEER, R. Van der. Spot and Time Charter Rates for tankers, 1970-77.

GUJARATI, Damodar. *Basic Econometrics*. 4th Edition, McGraw-Hill Book Company, New York, 2003.

HAMACHER, P. F.. *Transporte Marítimo de Petróleo e Derivados: Problemas, Modelos e Algoritmos*. Rio de Janeiro, 1989. 120p. Dissertação (Mestrado em Ciências em Engenharia Elétrica) – Pontífica Universidade Católica do Rio de Janeiro.

HENDRY, D. F. *Econometric Methodology: a personal perspective*. In: BEWLEY, T. F. *Advances in econometrics*. Cambridge: Cambridge University Press, 1987.

HILL, C., GRIFFITHS, W., JUDGE, G. Econometria, 2ª edição. São Paulo: Editora Saraiva, 2003

IMO, International Maritime Organization, 4 Albert Embankment London SE1 7SR. Disponível em <www.imo.org>. Acesso em 27 novembro 2007.

INTERTANKO. *International Association of Independent Tanker Owners*. St Clare House 30-33 Minories, London WC3N 1DD. Disponível em <www.intertanko.com>. Acesso em 26 novembro 2007.

ITOPF. *The International Tanker Owners Pollution Federation Limited.* 1 Oliver's Yard 55 City Road London EC1Y 1HQ. Disponível em <www.itopf.com>. Acesso em 25 novembro 2007.

KOEKEBAKKER, Steen; ADLAND, Roar; SODAL, Sigbjorn. *Are Spot Rates Stationary?* Artigo do Journal of Transport Economics and Policy. Março 2006.

KOOPMANS, T. C. *Three Essays on the State of Economic Science*. New York: McGraw-Hill, 1957.

KOOPMANS, T.C.; BECKMAN, M.. Assignment problems and the location of economic activities. Econometrica 25, 1957.

LEVINE, David M et al. *Estatística – Teoria e Aplicações*. 3ª edição, Rio de Janeiro, Editora LTC, 2005.

MARPOL, 73/78. 1999, 1997 e 1999 amendments. International Maritime Organization. 4 Albert Embankment, London, SE1 7SR. Disponível em www.imo.org. Acesso em 24 novembro 2007.

MATOS, Orlando C, Econometria Básica, 3ª edição, Salvador: Atlas, 2000.

MICHAELIS, Novo Dicionário da Língua Portuguesa, 1ª edição, Rio de Janeiro: Melhoramentos, 2004.

NHC, NATIONAL WEATHER SERVICE. 11691 SW 17th Street. Disponível em www.nhc.noaa.gov. Acesso em 12 de abril 2008.

OCIMF. Oil Companies International Marine Forum. 27 Queen Anne's Gate, London, SW1H 9BU. Disponível em <www.ocimf.com> . Acesso em 26 novembro 2007.

PINDYCK, Robert S., RUBINFELD, Daniel L. Microeconomics. USA: Prentice Hall. Fifth Edition, 2001.

REIS, E. J., MARGULIS, S. . *Perspectivas Econômicas do Desflorestamento da Amazônia*. Rio de Janeiro: IPEA, 1991 (Texto para Discussão)

SIMS, C. A. *Macroeconomics and Reality*. Chicago: Econometric Society, 1980, pages 1-48.

SPIEGEL, M. R.. Estatística: Resumo da teoria. São Paulo: McGraw-Hill, 1993.

STOPFORD, Martin. *Maritime Economics*. 2^a edição, Londres: Editora Routledge, 1997.

WORLDSCALE, *Introduction to Worldscale Freight Rate Schedules*, Worldscale Association Inc, New York 116 John Street suite 620. Disponível em www.worldscale-usa.com. Acesso em 01 outubro 2007.

ZANNETOS, Z. S. (1966), Theory of Oil Tankship Rates. MIT Press

7. Glossário de termos específicos da indústria

AFRA

Sigla de *Average Freight Rate Assessments*, que é um conjunto de taxas para afretamento de petroleiros, publicado pelo *London Tanker Brokers Panel* (ver). Leva em conta os fechamentos do mês anterior.

AFRAMAX

Oficialmente, é a categoria de navio petroleiro de até 79.999 toneladas de porte bruto. Entretanto, atualmente navios Aframax chegam a ter porte em torno de 110.000 tpb. São os maiores da categoria AFRA (ver), daí seu nome.

AFRETADOR

Definição de quem toma o navio por empréstimo, por tempo ou por viagem.

ARMADOR

Definição de quem arma o navio, deixando-o pronto para navegar. Não necessariamente é o fretador (embora em grande parte dos casos o armador é também o fretador), mas pode ser também uma empresa terceirizada para manter a embarcação. Erradamente utilizam o termo para "fretador", mas essa denominação é aceita no mercado de *shipping*.

"BAREBOAT"

Contrato de Afretamento a casco nu, ou seja, desarmado. É um contrato por tempo, normalmente acima de 7 anos, na qual o afretador é responsável pela administração do navio em sua totalidade, tanto na gestão comercial quanto na gestão náutica.

BARRIL, BARREL OU "BBL"

Trata-se de uma unidade comumente usada na indústria de petróleo para exprimir volumes de petróleo e derivados. Um barril é aproximadamente igual a 159 litros ou 42 galões americanos.

BROKER

Também denominado shipbrokers. Em geral, os contratos de afretamento são negociados através de intermediários entre o fretador e o afretador. São verdadeiros corretores de navio, recebendo usualmente uma comissão de 1,25% sobre o valor do contrato. Não raramente eles também fazem a intermediação de venda de *bunkers*, de carga, de compra e venda de navios, de venda de navios para sucata e compra de navios *newbuildings*.

"BUNKERS"

Trata-se do termo genérico aplicado aos combustíveis fornecidos para consumo dos navios. Por extensão, denomina-se *bunkering* a operação de fornecimento de combustível, realizada por meio de oleoduto, chata-tanque, etc., para embarcações de qualquer porte. No tempo dos navios a carvão, o combustível usado, carvão, ficava estocado em carvoeiras que, na língua inglesa, se traduz por *bunkers*. Por questões de tradição, supõe-se, o termo permaneceu.

CHARTER OUT

O mesmo que reletar (ver).

CONTRACT OF AFREIGHTMENT OU "COA"

Contratos de transporte ou por quantidade de carga, como poderão também ser denominados. Embora seja uma nomenclatura um tanto imprópria, por significar "contrato de afretamento", seu uso já está consagrado e definitivamente incorporado ao jargão da indústria.

CONTRATO SPOT

O mesmo que VOYAGE CHARTER PARTY; ver

"DEADWEIGHT"

Termo em inglês que denomina Porte Bruto, também abreviado para DWT. Ver *Porte Bruto*.

FPSO

Abreviação de Floating Production Storage and Offloading. É um tipo de navio utilizado pela indústria petrolífera para a exploração, armazenamento petróleo e/ou gás natural e escoamento da produção por navios aliviadores. São utilizados em locais de produção distantes da costa com inviabilidade de ligação por oleodutos ou gasodutos.

FRETADOR

Definição de quem cede o navio por empréstimo, por tempo ou por viagem. Comumente o fretador é denominado "armador" no mercado de afretamento (ver).

GESTÃO COMERCIAL

A Gestão Comercial se reflete nos assuntos referentes à carga: fechamento de contratos, recebimento e entrega da carga, relacionamento com *shipbrokers*, conclusão de contratos de afretamento, entre outros.

GESTÃO NÁUTICA

A Gestão Náutica se subdivide em gestão administrativa e gestão náutica propriamente dita. A gestão administrativa se ocupa dos cuidados com o casco, máquinas e aparelhos do navio, seu aprovisionamento, equipagem, etc. A gestão náutica propriamente dita refere-se à navegação, estabilidade, manobra do navio e aparelhos, etc.

INTEGRATED OIL COMPANIES

Empresas que exploram, produzem, transportam e refinam petróleo e comercializam produtos derivados do mesmo. A indústria chama as maiores dessas companhias de *Oil Majors* ou *Majors*.

LAYUP

Diz-se que o navio está em *layup* quando ele encontra-se encostado sem condições de navegação, normalmente por motivação econômica. Normalmente ocorre quando o mercado de fretes está muito baixo, então por vezes vale mais a

pena parar o navio do que operá-lo (com os custos inerentes) e receber baixa remuneração.

LONDON TANKERS BROKER PANEL

Organização comercial inglesa que congrega os principais *shipbrokers* londrinos. Publica mensalmente o índice *AFRA* (ver). Atua como consultora nas atividades de afretamento, tnato no aspecto comercial (valor do frete, condições, etc.) quanto na repercussão jurídica dos termos.

MAIDEN VOYAGE

Viagem inaugural do navio.

MAJORS

Denominação que a indústria petrolífera dá às Integrated Oil Companies (ver).

NEWBUILDING

Diz-se dos navios que acabam serem construídos. Após a *Maiden Voyage*, formalmente eles deveriam perder essa denominação, embora na prática é comum se designar *newbuildings* navios entregues no ano corrente.

PANAMAX

Tipo de navio que se aplica tanto aos navios petroleiros quanto graneleiros. São navios que podem trafegar pelo Canal do Panamá, que tem como restrições a boca (largura) de 32,20m e comprimento máximo de 259m. Na prática, essas limitações resultam em navios com no máximo 80.000 tpb.

OPEC

Organization of the Petroleum Exporting Countries, Organização dos Países Exportadores de Petróleo (OPEP) em Português. Originalmente formada em 1960 por 5 países (Iran, Iraque, Kwait, Arábia Saudita e Venezuela), teve posteriormente e gradativamente adesão de novos países: Qatar (1961), Indonésia (1962), Líbia (1962), Emirados Árabes (1967), Argélia (1969), Nigéria (1971) e por último Angola e Equador (2007). O Gabão foi membro no período entre 1975 e 1994, e o Equador já havia sido membro no período entre 1973 e 1992...

"PHASE OUT"

Termo comum aplicado à legislação que determina que os navios de Single Hull deverão gradativamente ser tirados do serviço de transporte marítimo

PORTE BRUTO

Também abreviado para TPB. É o peso que o navio pode transportar, aí incluídos carga, combustível, aguada, lubrificantes, víveres, sobressalentes, enfim, tudo o que necessita para sua completa operação, inclusive tripulação e seus pertences.

REGIÕES DO MUNDO

São convencionadas siglas para as diversas regiões do mundo, como segue:

AG – Arabian Gulf, Golfo Pérsico.

CB – Caribe

FAR EAST - Região do Oriente

MED - Mediterranean, Mar Mediterrâneo

TA – Transatlantic, diz-se das cargas que cruzam o Oceano Atlântico

UKC – *United Kingdom Continent*, costa norte da Europa e Grã Bretanha.

USAC – *United States Atlantic Coast*, Costa Leste dos Estados Unidos.

USG - United States Gulf, Golfo Americano

USWC - United States West Coast, Costa Oeste dos Estados Unidos

WAF – West Africa, Costa Oeste da África

RELETAR

Vem do inglês *to relet*, ou ainda *charter out*. Ato de sublocar, ou subafretar uma embarcação em seu controle comercial. Por exemplo, você afreta um navio em TCP e quando conveniente freta esse mesmo navio em VCP para terceiros.

SHILLING

No Reino Unido, um Shilling era uma moeda utilizada antes da decimalização em 1971. Ela tinha o valor de 12d (antigo pennie) e era igual a 1/20 avo de uma libra. Logo, eram necessários 240 pennies para se ter uma libra.

SHIPBROKER

O mesmo que broker; ver

SHUTTLE TANKER

Um Shuttle Tanker é um navio designado para transporte de petróleo e/ou gás natural de um campo offshore. É equipado com sistemas adequados para tal operação, que normalmente consiste num sistema de posicionamento dinâmico para manter sua posição relatica para com o campo, um sistema específico de tubulações e sistemas de segurança redundantes.

SPOT

Diz-se estar no mercado *spot* o navio que opera com contratações *Voyage Charter Party* (ver).

SUEZMAX

Navios petroleiros com capacidade de carga entre 120.000 e 199.999 toneladas de porte bruto. Entretanto, a definição mais clássica desse tipo de navio é: classificase por Suezmax o navio que atravessa normalmente o canal de Suez com carga máxima a bordo.

TIME CHARTER PARTY OU "TCP"

Afretamento por tempo determinado, ou período. O afretador dispõe comercialmente do navio durante determinado tempo. Compete-lhe o pagamento antecipado do aluguel (*hire*), combustível, despesas portuárias, ficando por conta dele a gestão comercial do navio. O fretador permanece responsável pela gestão náutica, ou seja seguro-casco, provisões, tripulação, mantimentos.

TONELADA MILHA

Unidade bastante utilizada no transporte marítimo. Em seu valor unitário, indica uma tonelada transportada por uma distância de uma milha. Por exemplo, se transportarmos 20.000 toneladas por uma distância de 3.000 milhas, teremos um transporte de 60 milhões de toneladas-milha.

TONELADA LONGA

Uma tonelada longa, adotada principalmente pelo Reino Unido e por diversos países do *Commonwealth*, era equivalente a 2240 libras (ou seja, 1.016,0469 kg).

TRADER

Nome que designa no jargão marítimo as empresas que tem como negócio principal a compra e venda de insumos e capacidade de transporte, visando aferir lucros por intermédio dessa transação comercial.

ULCC

Abreviação de *Ultra Large Crude Carrier*. São navios petroleiros com mais de 320.000 tolenadas de porte bruto.

VELOCIDADE ECONÔMICA

Diz-se do navio que anda a uma velocidade abaixo da máxima, visando economizar combustível. É utilizada em épocas em que o preço do *bunker* encontra-se alto e o mercado de fretes baixo.

VLCC

Abreviação de *Very Large Crude Carrier*, modernamente considerados os navios petroleiros entre 200.000 e 300.000 toneladas de porte bruto. O *London Tanker Brokers Panel* (ver) assim considera os navios entre 160.000 e 319.999 toneladas de porte bruto.

VOYAGE CHARTER PARTY OU "VCP"

Afretamento por viagem isolada. Ao afretador compete pagar o frete e taxas sobre a carga transportada. O fretador permanece responsável por todas as outras despesas, como combustível, aguada, lubrificantes, sobressalentes, reparos, despesas portuárias, tripulação, etc. Logo, tanto a gestão comercial quanto a náutica permanecem sob a responsabilidade do fretador.

WORLDSCALE

Abreviatura de "Worldwide Tanker Nominal Freight Scale". Trata-se de uma tabela de taxas nominais de fretes, empregada exclusivamente em contratos de viagem isolada e de viagens consecutivos. Essa tabela deve ser considerada apenas como um padrão de referência, e as taxas nela listadas não são uma medida absoluta dos custos do navio, nem tampouco dos lucros do fretador.

Referidas taxas são produto de cálculos feitos para se determinar o custo do transporte de uma tonelada longa de óleo entregue, com base na operação de um navio padrão hipotético, que realiza uma viagem redonda, com carga completa, desde o(s) porto(s) de carga ao(s) porto(s) de descarga, com retorno em lastro para o primeiro porto de carga.

8. APÊNDICES

8.1. APÊNDICE I - Dados para a análise do modelo de série temporal

Média	mensal	do valo	or de W	S - Fret	e de um	VLCC	na rota	AG - Fa	ar East
mês	WS	mês	ws	mês	ws	mês	WS	mês	ws
jan/90	66	nov/93	43	set/97	84	jul/01	51	mai/05	70
fev/90	63	dez/93	39	out/97	101	ago/01	51	jun/05	62
mar/90	83	jan/94	36	nov/97	91	set/01	80	jul/05	92
abr/90	71	fev/94	36	dez/97	66	out/01	61	ago/05	73
mai/90	56	mar/94	41	jan/98	57	nov/01	36	set/05	89
jun/90	54	abr/94	38	fev/98	69	dez/01	38	out/05	112
jul/90	67	mai/94	36	mar/98	79	jan/02	43	nov/05	194
ago/90	60	jun/94	37	abr/98	73	fev/02	43	dez/05	164
set/90	74	jul/94	45	mai/98	82	mar/02	34	jan/06	124
out/90	58	ago/94	55	jun/98	71	abr/02	29	fev/06	131
nov/90	75	set/94	48	jul/98	83	mai/02	49	mar/06	86
dez/90	98	out/94	52	ago/98	70	jun/02	34	abr/06	65
jan/91	86	nov/94	53	set/98	50	jul/02	40	mai/06	79
fev/91	122	dez/94	54	out/98	59	ago/02	34	jun/06	112
mar/91	72	jan/95	56	nov/98	55	set/02	37	jul/06	129
abr/91	45	fev/95	54	dez/98	60	out/02	77	ago/06	131
mai/91	73	mar/95	53	jan/99	64	nov/02	83	set/06	117
jun/91	90	abr/95	46	fev/99	66	dez/02	118	out/06	79
jul/91	62	mai/95	43	mar/99	63	jan/03	137	nov/06	72
ago/91	67	jun/95	60	abr/99	40	fev/03	103	dez/06	62
set/91	56	jul/95	71	mai/99	44	mar/03	138	jan/07	71
out/91	63	ago/95	69	jun/99	55	abr/03	96	fev/07	70
nov/91	60	set/95	67	jul/99	45	mai/03	79	mar/07	95
dez/91	44	out/95	53	ago/99	43	jun/03	73	abr/07	66
jan/92	49	nov/95	64	set/99	50	jul/03	49	mai/07	93
fev/92	46	dez/95	66	out/99	52	ago/03	51	jun/07	76
mar/92	36	jan/96	64	nov/99	46	set/03	104	jul/07	60
abr/92	38	fev/96	72	dez/99	51	out/03	56		
mai/92	42	mar/96	69	jan/00	59	nov/03	154		
jun/92	37	abr/96	51	fev/00	62	dez/03	159		
jul/92	44	mai/96	59	mar/00	75	jan/04	127		
ago/92	45	jun/96	76	abr/00	90	fev/04	138		
set/92	43	jul/96	75	mai/00	103	mar/04	103		
out/92	51	ago/96	72	jun/00	111	abr/04	95		
nov/92	58	set/96	58	jul/00	109	mai/04	105		
dez/92	60	out/96	60	ago/00	143	jun/04	130		
jan/93	54	nov/96	65	set/00	142	jul/04	136		
fev/93	48	dez/96	64	out/00	144	ago/04	109		
mar/93	48	jan/97	66	nov/00	175	set/04	109		
abr/93	46	fev/97	63	dez/00	162	out/04	225		
mai/93	40	mar/97	66	jan/01	108	nov/04	310		
jun/93	43	abr/97	57	fev/01	87	dez/04	209		
jul/93	59	mai/97	68	mar/01	98	jan/05	71		
ago/93	44	jun/97	72	abr/01	79	fev/05	156		
set/93	45	jul/97	77	mai/01	61	mar/05	93		
out/93	46	ago/97	92	jun/01	48	abr/05	87		

8.2. APÊNDICE II – Resumo do teste ADF para o modelo de série temporal

ADF Test Statistic	-2.207755	1% Critical Value*	-2.5754
		5% Critical Value	-1.9412
		10% Critical Value	-1.6165

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VLCC_WS_REAL)

Method: Least Squares Date: 01/02/09 Time: 02:10 Sample(adjusted): 2 211

Included observations: 210 after adjusting endpoints

Variable	Coefficient	Coefficient Std. Error t-		Prob.
VLCC_WS_REAL(-1)	-0.045325	0.020530	-2.207755	0.0283
R-squared	0.022789	Mean deper	ndent var	-0.028571
Adjusted R-squared	0.022789	S.D. depend	dent var	25.37884
S.E. of regression	25.08799	Akaike info	Akaike info criterion	
Sum squared resid	131546.2	Schwarz crit	terion	9.303345
Log likelihood	-974.1777	Durbin-Wats	son stat	2.118778

8.3. APÊNDICE III – Resumo do resultado da estimativa de equação pelo método dos mínimos quadrados, na análise com modelo de série temporal

Dependent Variable: VLCC_WS

Method: Least Squares Date: 01/01/09 Time: 10:41 Sample(adjusted): 4 200

Included observations: 197 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	17.11646	3.891163	4.398805	0.0000
VLCC_WS(-1)	0.645158	0.054040	11.93855	0.0000
VLCC_WS(-3)	0.121549	0.052398	2.319699	0.0214
DU	134.4741	23.75081	5.661874	0.0000
R-squared	-squared 0.669349 Mean dependent v		ndent var	75.19797
Adjusted R-squared	0.664209	S.D. depend	lent var	38.95401
S.E. of regression	22.57286	Akaike info	criterion	9.091469
Sum squared resid	98340.08	Schwarz criterion		9.158134
Log likelihood	-891.5097	F-statistic		130.2322
Durbin-Watson stat	1.864557	Prob(F-statistic)		0.000000

8.4. APÊNDICE IV – Teste de heterocedastricidade do modelo de séries temporais Mínimos Quadrados:

ARCH Test:

F-statistic	4.509427	Probability	0.000665
Obs*R-squared	20.75814	Probability	0.000900

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 01/08/09 Time: 01:02 Sample(adjusted): 9 200

Included observations: 192 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	288.5537	130.8174 2.2057		0.0286
RESID^2(-1)	0.040525	0.073316	0.552755	0.5811
RESID^2(-2)	0.029875	0.073169	0.408302	0.6835
RESID^2(-3)	0.300790	0.069810	4.308679	0.0000
RESID^2(-4)	0.076940	0.073195 1.051167		0.2945
RESID^2(-5)	-0.004579	0.073346	-0.062436	0.9503
R-squared	0.108115	Mean dependent var		509.8387
Adjusted R-squared	0.084140	S.D. depend	dent var	1657.947
S.E. of regression	1586.665	Akaike info	criterion	17.60741
Sum squared resid	4.68E+08	Schwarz criterion		17.70920
Log likelihood	-1684.311	F-statistic	4.509427	
Durbin-Watson stat	2.001423	Prob(F-stati	stic)	0.000665

8.5. APÊNDICE V – Resumo do resultado da estimativa de equação pelo método ARCH/GARCH, na análise com modelo de série temporal

Dependent Variable: VLCC_WS Method: ML - ARCH (Marquardt) Date: 01/01/09 Time: 12:41 Sample(adjusted): 4 200

Included observations: 197 after adjusting endpoints

Convergence achieved after 62 iterations

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.
С	8.609581	3.013305	2.857188	0.0043
VLCC_WS(-1)	0.727801	0.063596	11.44406	0.0000
VLCC_WS(-3)	0.123714	0.071978	1.718778	0.0857
DU	124.1440	204274.5	0.000608	0.9995
	Variance	Equation		
С	1.447059	2.249534	0.643270	0.5200
ARCH(1)	0.234902	0.055506	4.232029	0.0000
GARCH(1)	0.818937	0.027429	29.85685	0.0000
R-squared	0.659669	Mean deper	ndent var	75.19797
Adjusted R-squared	0.648922	S.D. depend	dent var	38.95401
S.E. of regression	23.08096	Akaike info criterion		8.444323
Sum squared resid	101218.9	Schwarz criterion		8.560985
Log likelihood	-824.7658	F-statistic		61.38008
Durbin-Watson stat	1.954453	Prob(F-statis	stic)	0.000000

8.6. APÊNDICE VI – Teste de heterocedasticidade do modelo de séries temporais ARCH/GARCH:

ARCH Test:

F-statistic	0.896780	Probability	0.484411
Obs*R-squared	4.519587	Probability	0.477267

Test Equation:

Dependent Variable: STD_RESID^2

Method: Least Squares
Date: 01/07/09 Time: 18:42
Sample(adjusted): 9 200

Included observations: 192 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.952206	0.213281	4.464556	0.0000
STD_RESID^2(-1)	-0.059650	0.073212	-0.814759	0.4163
STD_RESID^2(-2)	0.097141	0.073313	1.325009	0.1868
STD_RESID^2(-3)	0.102623	0.073264	1.400733	0.1630
STD_RESID^2(-4)	-0.029351	0.073340	-0.400208	0.6895
STD_RESID^2(-5)	-0.052476	0.073245	-0.716443	0.4746
R-squared	0.023540	Mean dependent var		1.010644
Adjusted R-squared	-0.002709	S.D. depend	dent var	1.976317
S.E. of regression	1.978993	Akaike info	criterion	4.233804
Sum squared resid	728.4527	Schwarz criterion		4.335601
Log likelihood	-400.4452	F-statistic		0.896780
Durbin-Watson stat	2.007915	Prob(F-stati	stic)	0.484411

8.7. APÊNDICE VII – Previsão segundo modelo de série temporal

		WS
ponto	WS Real	Estimado
197	79	
198	112	
199	129	
200	131	
201	117	117,81
202	79	110,31
203	72	105,1
204	62	99,66
205	71	94,8
206	70	90,61
207	95	96,89
208	66	83,57
209	93	80,64
210	76	78,05
211	60	75,75

8.8. APÊNDICE VIII - Base de dados para a análise de regressão múltipla

	Taxa Spot AG- Chiba	Aluguel de VLCC por 1 ano	Aluguel de VLCC por 3 anos	VLCC - Preço de venda para corte	VLCC a chegar no AG (em 4 semanas)	Estoques de Petróleo USA (excl. SPR)	Preço do Petróleo Árabe Leve	Produção Petróleo OPEC	Combustível ("bunker") para navios CST 380
mês	ws	US\$/dia	US\$/dia	US\$ Milhões	Unidade	Mil Barris	US\$/bbl	M bpd	US\$/ton
out/94	52.38	20.750	27.500	6,08	63	343.237	15,70	25,24	89
nov/94	52.5	21.000	27.500	6,22	70	346.287	16,30	25,11	103
dez/94	54.2	21.000	27.500	6,15	67	337.245	15,50	25,12	96
jan/95	56.38	21.500	27.500	5,87	73	330.463	16,25	25,18	109
fev/95	53.88	21.500	27.500	6,08	71	329.083	16,90	25,37	103
mar/95	52.9	21.500	27.500	6,08	66	339.486	16,55	24,98	106
abr/95	46	21.500	27.500	6,22	85	336.445	17,80	25,48	105
mai/95	42.75	21.500	27.500	6,22	79	332.352	17,60	25,99	108
jun/95	60	21.700	27.500	6,08	66	327.911	16,50	25,32	94
jul/95	71.25	22.500	27.500	6,15	64	315.599	15,15	25,64	81
ago/95	68.88	23.625	28.625	6,15	59	307.750	15,30	25,89	83
set/95	67	27.000	32.000	6,22	65	305.846	15,70	25,77	88
out/95	52.75	25.500	30.500	6,32	55	311.072	15,10	25,94	86
nov/95	63.63	25.000	30.000	6,32	47	318.981	15,85	25,58	86
dez/95	66	25.000	30.000	6,32	53	303.328	17,10	25,80	103
jan/96	64.38	25.188	30.000	6,32	60	303.081	17,15	25,59	104
fev/96	71.63	25.438	30.250	6,32	56	301.269	17,00	25,69	96
mar/96	68.5	26.200	31.000	6,59	71	299.657	19,25	25,73	107
abr/96	50.63	26.500	31.000	6,80	78	303.178	20,20	25,56	115
mai/96	58.5	26.500	31.000	6,76	62	303.927	18,30	25,62	100
jun/96	75.63	27.625	31.750	6,90	54	314.435	17,70	25,76	89
jul/96	75	29.000	33.000	7,00	55	308.413	18,25	25,84	88
ago/96	72	29.000	33.000	7,00	70	313.158	19,05	25,86	97
set/96	58.38	29.250	33.000	6,15	82	302.116	20,95	25,76	115
out/96	60	29.750	33.000	6,04	76	307.925	22,50	26,09	123
nov/96	64.5	30.000	33.000	6,15	75	299.296	21,35	26,11	117
dez/96	64.38	30.000	33.000	6,15	66	283.853	22,50	26,88	120
jan/97	66	30.000	33.000	5,98	60	300.506	22,20	27,50	110
fev/97	63.13	30.500	33.000	5,98	62	297.107	19,55	27,45	96
mar/97	66.25	31.000	33.000	5,98	55	313.219	18,15	27,41	90
abr/97	56.88	31.000	33.000	5,98	62	319.134	17,80	27,68	86
mai/97	68	31.200	33.200	5,94	48	326.279	19,20	27,23	85
jun/97	72.25	31.500	33.500	5,84	63	320.324	17,95	26,88	87
jul/97	76.88	31.750	33.750	5,91	52	309.694	17,80	26,88	89
ago/97	92	33.300	35.600	6,01	42	300.911	17,80	28,04	109
set/97	84	34.500	36.875	5,98	51	303.775	18,10	28,01	98

out/97	100.5	36.700	39.000	6,11	39	315.957	19,40	28,06	105
nov/97	91.25	39.000	41.000	5,98	66	323.522	18,55	27,96	108
dez/97	65.63	38.625	41.000	5,81	65	304.690	16,65	27,58	89
jan/98	57.2	37.300	40.200	5,74	62	316.754	13,70	28,19	74
fev/98	69.38	36.500	39.500	5,70	50	317.805	12,80	28,75	69
mar/98	78.75	36.625	39.000	5,60	37	334.484	11,55	28,56	67
abr/98	72.5	36.938	39.375	5,46	53	351.149	11,40	28,26	80
mai/98	81.5	37.000	39.500	5,33	47	350.875	12,19	28,25	73
jun/98	71	37.000	39.500	4,61	57	332.276	9,89	27,79	67
jul/98	83	37.000	39.100	4,44	44	338.068	10,04	27,71	67
ago/98	70	35.688	37.250	4,37	58	328.992	11,39	27,31	63
set/98	50.25	32.813	35.000	4,20	67	309.773	11,40	27,44	66
out/98	59	29.800	31.900	3,96	55	330.158	10,51	27,25	70
nov/98	55.38	29.000	31.000	3,82	65	335.269	8,86	27,54	61
dez/98	59.5	29.000	31.000	3,86	57	323.543	7,49	27,40	56
jan/99	64.38	29.000	31.000	3,82	54	332.210	8,97	27,36	65
fev/99	65.75	29.000	30.750	3,93	39	333.621	8,17	27,92	58
mar/99	62.5	28.875	30.375	4,03	67	344.998	10,26	27,78	62
abr/99	40.2	27.550	29.450	4,10	81	335.479	13,04	26,49	73
mai/99	43.63	27.063	28.563	4,03	60	339.987	13,09	26,45	72
jun/99	54.88	27.125	28.625	3,93	70	331.721	13,31	25,91	81
jul/99	45	26.600	28.500	4,00	73	331.867	16,86	26,49	96
ago/99	42.75	25.750	27.750	4,27	67	315.156	18,20	26,61	113
set/99	49.5	24.750	26.750	4,37	68	303.516	20,57	26,75	118
out/99	52.3	24.500	26.300	4,37	63	304.068	20,11	26,76	128
nov/99	46.38	24.375	26.250	4,71	69	298.327	22,53	26,25	130
dez/99	51.2	24.450	26.250	4,58	76	284.482	23,60	25,41	127
jan/00	58.75	23.750	26.125	4,47	51	283.877	23,19	26,20	128
fev/00	61.75	25.500	27.500	4,30	67	285.847	25,72	26,68	134
mar/00	75.1	29.200	30.700	4,58	47	297.087	25,21	26,75	147
abr/00	89.75	31.875	34.125	4,78	46	303.833	20,80	28,06	126
mai/00	102.5	34.125	36.125	4,85	37	294.712	26,00	28,80	127
jun/00	110.75	37.800	39.800	5,09	51	290.623	27,95	28,56	144
jul/00	108.75	40.000	42.000	5,50	46	282.190	26,70	28,82	133
ago/00	142.5	41.875	43.625	5,84	29	287.287	27,58	29,30	133
set/00	142	43.400	41.400	5,91	48	277.893	30,73	29,49	155
out/00	144.38	46.000	42.000	6,04	49	277.879	29,36	29,73	160
nov/00	175	50.750	45.250	6,04	33	286.441	30,36	29,53	150
dez/00	161.5	51.000	45.000	6,04	50	285.507	23,66	27,70	127
jan/01	107.5	49.500	43.000	6,49	55	294.327	23,40	27,70	118
fev/01	86.88	47.250	41.000	6,66	55	282.467	25,70	27,67	122

(continuação do Apêndice VIII)

	Taxa Spot AG- Chiba	Aluguel de VLCC por 1 ano	Aluguel de VLCC por 3 anos	VLCC - Preço de venda para corte	VLCC a chegar no AG (em 4 semanas)	Estoques de Petróleo USA (excl. SPR)	Preço do Petróleo Árabe Leve	Produção Petróleo OPEC	Combustível ("bunker") para navios CST 380
mês	ws	US\$/dia	US\$/dia	US\$ Milhões	Unidade	Mil Barris	US\$/bbl	M bpd	US\$/ton
mar/01	98	47.900	41.500	6,32	37	308.544	22,09	28,74	120
abr/01	78.75	47.000	40.750	6,69	64	330.577	23,90	27,90	117
mai/01	61.25	45.250	39.500	6,49	58	328.364	26,17	27,74	122
jun/01	48.1	38.600	34.600	6,32	57	308.249	25,48	25,68	122
jul/01	51.31	34.000	32.000	5,74	50	312.883	23,35	27,33	118
ago/01	51.2	34.000	31.400	5,19	53	307.935	24,90	27,75	125
set/01	79.69	34.750	31.750	5,46	47	309.287	24,32	27,05	130
out/01	60.63	33.000	31.250	4,61	74	313.234	19,00	27,09	111
nov/01	36	27.500	28.500	4,44	73	312.190	18,00	26,96	102
dez/01	37.75	26.750	27.750	4,51	67	311.980	17,00	26,17	104
jan/02	42.75	26.000	27.000	4,78	55	320.302	18,90	25,12	105
fev/02	43.38	25.625	27.063	4,64	62	327.357	22,00	25,06	103
mar/02	33.8	26.000	27.150	4,95	66	333.504	22,76	25,33	121
abr/02	29.25	22.375	24.938	5,12	69	324.649	22,70	24,21	136
mai/02	49.3	22.300	24.600	4,78	54	327.029	23,30	24,47	141
jun/02	34	22.750	24.875	4,78	80	317.554	22,05	24,49	135
jul/02	39.63	22.250	24.750	4,85	48	304.274	23,25	24,84	143
ago/02	34	21.450	24.650	4,92	73	296.217	23,85	24,96	146
set/02	37	19.438	23.875	5,41	61	270.647	24,85	25,60	161
out/02	76.88	25.375	26.500	5,63	35	291.471	25,29	26,53	154
nov/02	83	27.600	27.000	5,98	50	288.067	21,85	26,43	126
dez/02	118.13	32.125	27.500	5,91	35	277.614	25,25	24,76	134
jan/03	137	38.300	29.200	6,15	39	274.045	27,96	25,78	174
fev/03	103.13	32.875	29.375	6,32	55	271.086	28,89	27,12	175
mar/03	137.5	32.500	28.500	6,76	35	281.587	25,90	26,97	148
abr/03	96.25	30.625	28.500	6,66	57	291.375	21,30	26,31	126
mai/03	78.5	28.200	27.000	7,03	49	285.523	25,90	26,65	138
jun/03	73.13	27.750	26.500	7,17	55	284.594	25,65	25,81	148
jul/03	49.38	26.500	24.563	8,20	56	284.922	28,63	26,30	171
ago/03	51	26.200	24.250	8,03	52	279.495	27,66	26,74	160
set/03	104.38	30.625	25.500	8,20	43	286.656	27,38	26,90	148
out/03	56	28.400	25.700	8,20	55	294.644	26,06	27,22	152
nov/03	154.38	37.250	27.750	8,64	26	281.226	27,38	27,28	155
dez/03	159.38	41.000	28.250	9,05	36	268.875	28,08	27,26	141
jan/04	126.8	38.200	27.700	10,76	42	271.606	29,42	27,56	141
fev/04	138.13	36.125	27.875	11,61	73	284.315	27,15	27,21	139
mar/04	103.13	35.000	27.875	11,95	39	297.348	29,77	28,02	145

abr/04	94.5	36.000	30.000	12,29	40	303.300	29,60	27,67	153
mai/04	105	43.500	31.500	11,61	39	304.508	33,61	27,82	171
jun/04	129.88	50.000	33.250	9,39	34	304.845	32,25	28,86	160
jul/04	135.5	50.000	35.100	11,78	33	294.424	33,93	29,23	163
ago/04	109.38	50.250	38.625	12,29	47	278.644	37,76	29,78	167
set/04	108.75	50.250	38.000	12,29	43	272.951	43,44	30,17	162
out/04	225	59.400	40.600	12,46	20	286.666	43,44	29,78	174
nov/04	310	76.250	44.250	12,46	21	288.238	38,73	29,96	147
dez/04	209	66.000	41.100	12,46	49	285.741	33,71	29,96	144
jan/05	70.63	50.375	34.125	13,32	48	286.061	37,25	28,90	158
fev/05	155.63	54.375	37.625	13,66	39	302.141	38,73	28,87	171
mar/05	92.5	50.625	39.250	13,66	57	319.859	47,28	29,20	203
abr/05	87	48.000	40.000	13,49	62	337.628	48,47	29,80	232
mai/05	70	45.625	38.500	11,61	63	336.171	43,16	29,30	230
jun/05	61.88	45.625	38.000	10,25	56	327.925	48,69	29,59	232
jul/05	92	44.600	38.000	9,22	41	318.399	52,92	29,99	249
ago/05	73.13	40.750	37.750	9,22	72	309.616	57,21	29,95	262
set/05	88.5	46.000	37.000	11,61	59	306.341	59,47	30,02	288
out/05	111.88	45.250	37.000	10,76	53	322.140	52,94	29,52	271
nov/05	194.38	50.250	37.000	10,42	34	322.443	50,47	29,83	256
dez/05	164	48.500	37.000	10,42	70	323.704	51,15	30,11	256
jan/06	123.75	43.750	37.000	10,42	65	323.843	57,67	30,09	283
fev/06	131.25	43.875	37.250	10,42	62	341.613	56,04	30,16	295
mar/06	86	41.000	37.800	10,76	65	342.378	57,30	29,63	300
abr/06	65	38.250	37.000	11,27	68	347.644	64,31	29,63	320
mai/06	78.75	42.000	38.000	11,44	59	340.651	64,67	29,42	325
jun/06	111.5	46.000	38.400	11,27	50	336.245	62,88	29,52	301
jul/06	128.75	54.250	39.000	11,27	43	331.043	68,04	29,62	317
ago/06	131.25	56.250	39.750	11,44	61	331.201	68,66	29,88	311
set/06	116.5	60.000	42.000	11,78	65	332.592	59,59	29,67	281
out/06	79.38	57.500	41.000	11,78	81	336.489	54,57	29,16	266
nov/06	71.88	52.000	38.500	13,66	68	332.225	54,58	28,34	262
dez/06	62	44.000	38.000	14,00	74	309.817	56,93	28,62	256
jan/07	70.63	42.875	37.750	14,68	68	323.687	49,28	28,15	229
fev/07	70	41.000	37.000	14,34	78	318.046	51,39	28,19	252
mar/07	95	41.000	37.000	14,34	54	331.879	62,97	28,32	273
abr/07	66.25	41.000	37.000	14,86	73	337.458	62,79	28,20	312
mai/07	92.5	41.750	37.000	14,86	62	348.417	63,78	28,38	326
jun/07	75.5	42.500	37.000	14,86	79	354.791	70,61	28,49	326
jul/07	60	42.500	37.000	14,86	77	338.527	71,65	28,82	360

8.9. APÊNDICE IX – Resumo do teste ADF para o modelo de regressão múltipla

ADF Test Statistic	-3.794898	1% Critical Value*	-3.4749
		5% Critical Value	-2.8807
		10% Critical Value	-2.5769

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VLCC_WS_REAL)

Method: Least Squares Date: 01/07/09 Time: 10:51 Sample(adjusted): 5 154

Included observations: 150 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
VLCC_WS_REAL(-1)	-0.245379	0.064660	-3.794898	0.0002	
D(VLCC_WS_REAL(-	0.057075	0.088622	0.644023	0.5206	
1))					
D(VLCC_WS_REAL(-	-0.113867	0.083801	-1.358781	0.1763	
2))					
D(VLCC_WS_REAL(-	0.052707	0.083134	0.634007	0.5271	
3))					
C	20.51771	5.815668	3.528005	0.0006	
R-squared	0.144431	Mean dependent var		0.024133	
Adjusted R-squared	0.120829	S.D. depend	dent var	28.86859	
S.E. of regression	27.06838	Akaike info criterion		9.467375	
Sum squared resid	106241.1	Schwarz criterion		9.567729	
Log likelihood	-705.0531	F-statistic		6.119451	
Durbin-Watson stat	1.997304	Prob(F-statistic)		0.000141	

8.10. APÊNDICE X – Resumo do resultado da estimativa de equação pelo método dos mínimos quadrados, na análise de regressão múltipla

Dependent Variable: VLCC_WS_REAL_143

Method: Least Squares Date: 01/10/09 Time: 01:49 Sample(adjusted): 2 143

Included observations: 142 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	68.53840	13.04698	5.253202	0.0000
VLCC_WS_REAL_14	0.404185	0.061673	6.553667	0.0000
3(-1)				
VLCC_AG_NEXT4W	-1.113952	0.147133	-7.571046	0.0000
EEKS				
VLCC_TCP_1ANO	0.001255	0.000271	4.632097	0.0000
R-squared	0.779372	Mean deper	ndent var	83.26859
Adjusted R-squared	0.774575	S.D. depend	dent var	41.93218
S.E. of regression	19.90894	Akaike info criterion		8.847979
Sum squared resid	54698.49	Schwarz cri	terion	8.931242
Log likelihood	-624.2065	F-statistic		162.4954
Durbin-Watson stat	1.543543	Prob(F-stati	stic)	0.000000

8.11. APÊNDICE XI – Teste de heterocedasticidade ARCH-LM no modelo de regressão múltipla – Mínimos Quadrados

ARCH Test:

F-statistic	8.902615	Probability	0.000000
Obs*R-squared	34.74551	Probability	0.000002

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 01/08/09 Time: 01:09 Sample(adjusted): 7 143

Included observations: 137 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	203.4372	89.19456	2.280825	0.0242
RESID^2(-1)	0.075050	0.086619	0.866433	0.3878
RESID^2(-2)	0.457821	0.085795	5.336222	0.0000
RESID^2(-3)	0.233129	0.092420	2.522513	0.0128
RESID^2(-4)	-0.156804	0.085829	-1.826943	0.0700
RESID^2(-5)	-0.128770	0.086665	-1.485836	0.1397
R-squared	0.253617	Mean dependent var		391.6854
Adjusted R-squared	0.225129	S.D. depend	dent var	1014.830
S.E. of regression	893.3221	Akaike info	criterion	16.47058
Sum squared resid	1.05E+08	Schwarz criterion		16.59846
Log likelihood	-1122.235	F-statistic		8.902615
Durbin-Watson stat	2.008348	Prob(F-stati	stic)	0.000000

8.12. APÊNDICE XII – Resumo do resultado da estimativa de equação pelo método ARCH, na análise de regressão múltipla

Dependent Variable: VLCC_WS_REAL_143

Method: ML - ARCH (Marquardt) Date: 01/10/09 Time: 02:25 Sample(adjusted): 2 143

Included observations: 142 after adjusting endpoints

Convergence achieved after 51 iterations

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.
С	67.77867	7.271481	9.321165	0.0000
VLCC_WS_REAL_14	0.706352	0.065420	10.79726	0.0000
3(-1)	0.704705	0.075044	40.00000	0.0000
VLCC_AG_NEXT4W	-0.781785	0.075244	-10.39002	0.0000
EEKS VLCC TCP 1ANO	-1.90E-05	0.000226	-0.084168	0.9329
VLCC_TCP_TANO	-1.90⊑-03	0.000226	-0.004100	0.9329
	Variance	Equation		
С	2.905834	2.440029	1.190901	0.2337
ARCH(1)	0.189293	0.060698	3.118620	0.0018
GARCH(1)	0.845530	0.036311	23.28581	0.0000
R-squared	0.709314	Mean deper	ndent var	83.26859
Adjusted R-squared	0.696395	•		41.93218
S.E. of regression	23.10478	Akaike info criterion		8.293275
Sum squared resid	72067.15	Schwarz crit	terion	8.438985
Log likelihood	-581.8225	F-statistic		54.90323
Durbin-Watson stat	1.985829	Prob(F-stati	stic)	0.000000

8.13. APÊNDICE XIII – Resumo do resultado da estimativa de equação pelo método ARCH, na análise de regressão múltipla

Dependent Variable: VLCC WS REAL 143

Method: ML - ARCH (Marquardt)
Date: 01/10/09 Time: 02:31
Sample(adjusted): 2 143

Included observations: 142 after adjusting endpoints

Convergence achieved after 36 iterations

Variance backcast: ON

	Coefficient	Std. Error	z-Statistic	Prob.
С	67.38671	6.377173	10.56686	0.0000
VLCC_WS_REAL_14	0.702800	0.038369	18.31688	0.0000
3(-1)				
VLCC_AG_NEXT4W	-0.780619	0.074941	-10.41644	0.0000
<u>EEKS</u>				
	Variance	Equation		
С	2.901320	2.450756	1.183847	0.2365
ARCH(1)	0.189488	0.060568	3.128500	0.0018
GARCH(1)	0.845211	0.036344	23.25566	0.0000
R-squared	0.710741	Mean dependent var		83.26859
Adjusted R-squared	0.700107	S.D. dependent var		41.93218
S.E. of regression	22.96312	Akaike info	criterion	8.279225
Sum squared resid	71713.44	Schwarz criterion		8.404119
Log likelihood	-581.8250	F-statistic		66.83342
Durbin-Watson stat	1.984858	Prob(F-statistic)		0.000000

8.14. APÊNDICE XIV – Teste de heterocedasticidade ARCH-LM no modelo de regressão múltipla

ARCH Test:

F-statistic	0.592707	Probability	0.705558
Obs*R-squared	3.030708	Probability	0.695251

Test Equation:

Dependent Variable: STD_RESID^2

Method: Least Squares
Date: 01/08/09 Time: 00:55
Sample(adjusted): 7 143

Included observations: 137 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.896593	0.239605	3.741956	0.0003
STD_RESID^2(-1)	0.092116	0.087247	1.055802	0.2930
STD_RESID^2(-2)	0.019472	0.087475	0.222600	0.8242
STD_RESID^2(-3)	0.096692	0.086949	1.112045	0.2682
STD_RESID^2(-4)	-0.051993	0.087346	-0.595256	0.5527
STD_RESID^2(-5)	-0.039294	0.087143	-0.450907	0.6528
R-squared	0.022122	Mean dependent var		1.014887
Adjusted R-squared	-0.015202	S.D. depend	dent var	1.883976
S.E. of regression	1.898242	Akaike info criterion		4.162541
Sum squared resid	472.0352	Schwarz criterion		4.290423
Log likelihood	-279.1341	F-statistic		0.592707
Durbin-Watson stat	2.002015	Prob(F-stati	stic)	0.705558

8.15. APÊNDICE XV – Previsão segundo modelo de regressão múltipla

ponto	WS Real	WS Estimado
140	79	
141	112	
142	129	
143	131	
144	117	108,6
145	79	80,5
146	72	70,9
147	62	59,4
148	71	55,9
149	70	46,0
150	95	57,2
151	66	50,6
152	93	54,6
153	76	44,1
154	60	38,2

8.16. APÊNDICE XVI – Resumo do resultado da estimativa de equação pelo método VAR

Vector Autoregression Estimates Date: 01/07/09 Time: 22:57 Sample(adjusted): 2 143
Included observations: 142 after adjusting

endpoints

Standard errors in () & t-statistics in []						
	WS_VLCC	VLCC_AG_N				
		EXT4WEEKS				
WS_VLCC(-1)	0.612046	-0.017679				
	(0.07071)	(0.03132)				
	[8.65618]	[-0.56445]				
VLCC_AG_NEXT 4WEEKS(-1)	-0.716374	0.433118				
	(0.22313)	(0.09884)				
	[-3.21055]	[4.38191]				
С	72.59104	33.04216				
	(17.0019)	(7.53147)				
	[4.26959]	[4.38721]				
R-squared	0.604652	0.222523				
Adj. R-squared	0.598964	0.211336				
Sum sq. resids	98036.56	19237.71				
S.E. equation	26.55747	11.76439				
F-statistic	106.2946	19.89173				
Log likelihood	-665.6353	-550.0141				
Akaike AIC	9.417399	7.788931				
Schwarz SC	9.479846	7.851378				
Mean dependent	83.33099	55.71549				
S.D. dependent	41.93675	13.24718				
Determinant Resid	62396.57					
Covariance Log Likelihood (d.f.	-1186.908					
Akaike Information	16.80153					
Schwarz Criteria	16.92642					
TO.OZOTZ						

8.17. APÊNDICE XVII – Previsão segundo equação do VAR

VAR							
Ponto	ws	VLCC AG next 4 weeks	WS Forecast				
140	79	59					
141	112	50					
142	129	43					
143	131	61					
144	117	65	106				
145	79	81	80				
146	72	68	73				
147	62	74	64				
148	71	68	63				
149	70	78	55				
150	95	54	68				
151	66	73	62				
152	93	62	66				
153	76	79	56				
154	60	77	52				

8.18. APÊNDICE XVIII – Cálculo do MAPE (Mean Absolute Percent Error)

So		Séries Temporais		Regressão Múltipla		VAR	
Ponto	WS Real	WS Estimado	MAPE	WS Estimado	MAPE	WS Estimado	MAPE
197	79						
198	112						
199	129						
200	131						
201	117	118	0.69%	109	7.20%	106.375	9.08%
202	79	110	39.63%	80	1.85%	79.6955	0.88%
203	72	105	45.97%	71	1.59%	72.6756	0.94%
204	62	100	60.77%	59	4.17%	64.0835	3.36%
205	71	95	33.52%	56	21.31%	63.1211	11.10%
206	70	91	29.44%	46	34.35%	55.3721	20.90%
207	95	87	8.54%	57	39.77%	67.8137	28.62%
208	66	84	26.63%	51	23.31%	61.824	6.33%
209	93	81	13.29%	55	41.33%	66.0343	29.00%
210	76	78	2.70%	44	42.02%	56.439	25.74%
211	60	76	26.26%	38	36.26%	51.9987	13.34%
			26.13		23.01		13.57

8.19. APÊNDICE XIX – Cálculo do MAE (Mean Absolute Error)

		Séries Temporais		Regressão Múltipla		VAR	
Ponto	WS Real	WS Estimado	MAE	WS Estimado	MAE	WS Estimado	MAE
197	79						
198	112						
199	129						
200	131						
201	117	118	1	109	8	106	10.63
202	79	110	31	80	1	80	0.70
203	72	105	33	71	1	73	0.68
204	62	100	38	59	3	64	2.08
205	71	95	24	56	15	63	7.88
206	70	91	21	46	24	55	14.63
207	95	87	8	57	38	68	27.19
208	66	84	18	51	15	62	4.18
209	93	81	12	55	38	66	26.97
210	76	78	2	44	32	56	19.56
211	60	76	16	38	22	52	8.00
			18.47		18.01		11.13

8.20. APÊNDICE XX – Cálculo do RMSE (Root Mean Square Error)

		Séries Temporais		Regressão Múltipla		VAR	
Ponto	WS Real	WS Estimado	RMSE	WS Estimado	RMSE	WS Estimado	RMSE
197	79						
198	112						
199	129						
200	131						
201	117	118	0.7	109	71.0	106	112.9
202	79	110	980.3	80	2.1	80	0.5
203	72	105	1095.6	71	1.3	73	0.5
204	62	100	1419.4	59	6.7	64	4.3
205	71	95	566.5	56	229.0	63	62.1
206	70	91	424.7	46	578.0	55	214.0
207	95	87	65.9	57	1427.3	68	739.1
208	66	84	308.8	51	236.7	62	17.4
209	93	81	152.7	55	1477.5	66	727.1
210	76	78	4.2	44	1020.0	56	382.6
211	60	76	248.2	38	473.2	52	64.0
		21.88		22.41		14.54	

8.21. APÊNDICE XXI – Testes DF e ADF

Para se detectar a presença de raiz unitária em uma série temporal existem alguns testes, os mais conhecidos são: teste DF (*Dickey-Fuller*) e o ADF (*Augmented Dickey-Fuller* ou *Dickey-Fuller* Aumentado).

O objetivo básico do primeiro (DF) é fazer um teste de hipótese sobre aleatoriedade da defasagem.

$$\Delta Y_t = Y_t - Y_{t-1} = u (1)$$

Ou seja,

$$Y_{t} = \varphi . Y_{t-1} + u (2)$$

Se o coeficiente do modelo auto-regressivo de ordem 1 for igual a 1, então a variável estocástica *y*_ttem uma raiz unitária, logo:

 H_0 : φ = 1, a série contém raiz unitária.

H₁: ϕ < 1, a série não contém raiz unitária.

Usualmente, segundo Brooks (2002), utiliza-se a seguinte sentença para a realização do referido teste:

Atribui-se y_{t-1} nos dois lados da equação (2):

$$Y_{t} - Y_{t-1} = \varphi \cdot (Y_{t-1} - Y_{t-1}) + \varepsilon_{t}(3)$$

$$\Delta Y_{t} = (\varphi - 1).Y_{t-1} + \varepsilon_{t}(4)$$

Se $\Box = (\varphi - 1)$, logo:

$$\Delta Y_t = \psi . Y_{t-1} + \varepsilon_t(5)$$

Então o teste de hipótese ϕ = 1, da equação 2, é equivalente ao teste ψ = 0, da equação 5, em que:

 H_0 : ψ = 0, a série contém raiz unitária e

 H_1 : Ψ < 0, a série não contém raiz unitária.

Logo, o teste estatístico Dickey-Fuller (DF) é definido como:

$$TesteEstatístico(DF) = \frac{\Psi}{DesvioPadrão(\Psi)}$$

O teste estatístico não segue uma distribuição t usual, os valores críticos derivam dos experimentos de Monte Carlo, que podem ser encontrados em alguns livros de econometria recente.

Já o teste ADF (*Augmented Dickey-Fuller* ou *Dickey-Fuller aumentado*), argumenta que o exposto acima não considera a possibilidade de uma autocorrelação dos erros (u₁), com isso quebra-se uma das hipóteses econométricas. No entanto, o teste referido corrige esse erro.

No trabalho será utilizado o *software E-Views* para realizar os dois testes supramencionados. Todavia, uma vez detectada a presença do efeito não estacionário na série histórica, deve-se diferenciar as variáveis, ou seja, utilizar no modelo regressivo a diferença entre o valor da série e o seu valor temporal defasado, para todas as observações, na mesma proporção do número de raízes unitárias, pois, assim, elementos de longo prazo entre as variáveis são eliminados. Tomando, como exemplo, um modelo regressivo genérico que tenha uma raíz unitária:

$$Y_{t} = \alpha + \beta .. X_{t} + \varepsilon (6)$$

Logo, corrige-se a estacionariedade da equação 6 pela diferenciação única de cada uma de suas variáveis:

$$Y_{t} - Y_{t-1} = \alpha + \beta .. (X_{t} - X_{t-1}) + \varepsilon (7)$$
$$\therefore \Delta Y = \alpha + \beta .\Delta X + \varepsilon (8)$$

Entretanto, como demonstra a equação 8, as variáveis do modelo não mais serão os valores históricos absolutos da série e sim seus valores diferenciados. Isso quer dizer que, uma vez detectada a estacionariedade da série, a análise da qualidade (R₂, teste F, teste t, Durbin-Watson etc.) do modelo deve ser feita sobre a equação 8 e não mais sobre a equação 6. Se for verificado, após a diferenciação, que a qualidade estimativa do modelo é fraca, ele deve ser abandonado.

8.22. APÊNDICE XXII – Teste de normalidade de Jarque-Bera (JB)

Um dos pressupostos do modelo de regressão foi de que os erros aleatórios têm seu valor esperado igual a zero. Como o erro é uma variável aleatória e precisa ser estimado no processo de obtenção da reta de regressão, deve empreender um teste para verificar se os erros obedecem aquele pressuposto.

O teste de normalidade de Jarque-Bera (JB) se baseia nos resíduos do método dos mínimos quadrados. Para sua realização o teste necessita dos cálculos da assimetria e da curtose. Sua estatística é:

$$JB = \frac{n}{6} \left(S^2 + \frac{(K-3)^2}{4} \right)$$

Onde:

N: é o número de observações (ou graus de liberdade);

S: mede a assimetria e;

K: mede a curtose da série.

S e K são definidos por:

$$S = \frac{\mu_3}{\sigma^3} = \frac{\mu_3}{\left(\sigma^2\right)^{\frac{3}{2}}} = \frac{\frac{1}{n} \cdot \sum_{i=1}^{n} (x - \bar{x})^3}{\left(\frac{1}{n} \cdot \sum_{i=1}^{n} (x - \bar{x})^2\right)^{\frac{3}{2}}}$$

$$K = \frac{\mu_4}{\sigma^4} = \frac{\mu_4}{\left(\sigma^2\right)^2} = \frac{\frac{1}{n} \cdot \sum_{i=1}^{n} (x - \bar{x})^4}{\left(\frac{1}{n} \cdot \sum_{i=1}^{n} (x - \bar{x})^2\right)^2}$$

- a) S = 0 : se o resultado for zero, a distribuição é simétrica;
- b) S < 0 : se o valor for negativo, a distribuição é <u>assimétrica negativa</u> (inclinada para a esquerda);
- c) K = 3: Mesocúrtica a distribuição de frequências é a própria distribuição normal;
 - d) K < 3 : Platicúrtica a distribuição é achatada (alta variabilidade);
- e) K > 3: <u>Leptocúrtica</u> a distribuição é concentrada em torno da média (alta homogeneidade).

Uma vez que, em uma distribuição normal, o valor da assimetria é zero e o valor da curtose é 3, se testará na hipótese nula que os resíduos são distribuídos normalmente. O teste JB é distribuído por uma qui-quadrado com 2 graus de liberdade. Se o valor de JB for muito baixo, rejeitamos a hipótese de normalidade da distribuição dos erros aleatórios. Mas se o valor de JB for alto, aceitamos a hipótese de que os erros se comportam com preconiza os pressupostos da regressão.

8.23. APÊNDICE XXIII - Modelos ARCH

A primeira aparição do modelo ARCH (*Autoregressive Conditional Heteroscedaticity*) na literatura foi em Engle (1982). Apesar de ter sido desenhado para modelar e prever inflação, já nesse artigo as propriedades do modelo foram identificadas como úteis para análise dos dados de finanças. No modelo tradicional de regressão, homocedástico, a variância σ_t não depende da informação do período (t - 1). Quando os modelos precisam ser corrigidos para heterocedasticidade é usada uma variável x_t , de forma que:

$$V_{v_t} = \sigma^2 . x_{t-1}^2$$

O artigo propõe as formulações:

$$y_t = \varepsilon_t \cdot \sqrt{h_t}$$
 e $h_t = \alpha_0 + \alpha_1 \cdot y_{t-1}^2$, com $V(\varepsilon_t) = 1$

Dessa maneira as distribuições condicionais de y_t (condicionadas ao conjunto de informações de t-1) são:

$$y_t \approx N(0, h_t)$$
 e $h_t = \alpha_0 + \alpha_1 y_{t-1}^2$

Um modelo de regressão linear com a variância gerada por um processo ARCH é descrito por:

$$y_{t} | \psi_{t-1} \approx N(x_{t}.\beta.h_{t})$$

$$h_{t} = h(\varepsilon_{t-1}, \varepsilon_{t-2}, ..., \varepsilon_{t-p}, \alpha)$$

$$\varepsilon_{t} = y_{t} - x_{t}.\beta$$

As características atrativas para quem pretende modelar dados de finanças são duas: erros grandes e pequenos tendem a ocorrer em grupos (erros grandes próximos de erros grandes e erros pequenos próximos de erros pequenos) e, como a teoria diz que portfólios são escolhidos com base nas médias e variâncias dos retornos de cada ativo, uma melhor previsão da variância é de grande ajuda. Além disso, um ARCH(1), ou seja, com a variância de t dependendo somente do erro de previsão do período t-1, gera uma variável dependente com caudas mais pesadas do que uma distribuição Normal.

Esse modelo só serve para dados de alta freqüência, sendo que a freqüência mais usada é de fechamentos diários. Esse tipo de formulação precisa que as observações sejam eqüidistantes no tempo, o que impede seu uso para modelagem de dados de ultra freqüência, como por exemplo observações intradiárias.

Uma extensão natural do modelo surgiu com Bollerslev (1986). Sua versão do modelo ficou conhecida como GARCH. Observando que as aplicações do ARCH acabavam tendo que optar por uma estrutura de defasagem longa e com pesos declinantes impostos *ad hoc*, esse artigo propõe uma nova abordagem que traga essa característica embutida. Esse tipo de procedimento sugere que a introdução de uma variável de média móvel seria desejável. É quase como a extensão dos processos AR para processos ARMA. O modelo agora é descrito por:

$$\varepsilon_{t}|\psi_{t-1}\approx N(0.h_{t})$$

$$h_{t} = \alpha_{0} + \sum_{j=1}^{q} \alpha_{j}.\varepsilon_{t-j}^{2} + \sum_{i=1}^{p} \beta_{j}.h_{t-i}$$

No ARCH original a variância condicional é função das variâncias amostrais, enquanto no GARCH variâncias condicionais defasadas são levadas em conta também. É uma espécie de mecanismo de aprendizagem adaptativo. Do ponto de

vista teórico de séries temporais o modelo GARCH(p,q) é um ARMA em ε_t^2 com ordens m = máx{p,q} e p. O GARCH(1,1), assim como o ARCH(p), apresenta caudas pesadas.

Uma nova abordagem trouxe o modelo ARCH ainda mais próximo das características estatísticas dos dados de finanças, que ficou conhecida como EGARCH (exponential GARCH). Essa novidade foi introduzida por Nelson (1991). O objetivo é contornar algumas limitações do GARCH.

Primeiro, os modelos ainda não davam conta do fato de que más e boas notícias podem afetar a volatilidade de forma diversa. Rydberg (2000) e outros apresentam o fato de que más notícias (retornos abaixo do esperado) geram aumento na volatilidade maior que boas notícias (retornos acima do esperado). Do ponto de vista teórico ainda não há consenso sobre como explicar esse tipo de comportamento por parte dos investidores.

O segundo problema é que os modelos apresentam dificuldades na interpretação de persistência de choques na variância condicional.

O terceiro problema é duplo. A imposição de restrições de não negatividade para o vetor α gerou problemas na estimação em vários casos, além de fazer com que a variância perdesse seu caráter aleatório e oscilatório. Quando o erro do processo que gera a variância aumenta no período t a variância aumenta para todos os períodos subsequentes. Cada α precisa ser positivo para que a variância seja positiva com probabilidade 1 em todos os períodos.

É proposto então um novo processo para a variância condicional nos moldes do GARCH (notando que o ARCH é um caso especial do GARCH):

$$\ln(\sigma_t^2) = \alpha_t + \sum_{k=1}^{\infty} \beta_k . g(z_{t-k}), \beta_1 \equiv 1$$

(7)
$$g(z_t) = \theta z_t + \gamma [|z_t| - E|z_t|]$$

O logaritmo impõe a restrição de não negatividade. Quando a função de máxima verossimilhança é maximizada não é preciso impor restrições como no caso do GARCH.

A forma da função g dá conta da relação assimétrica da relação entre retornos e volatilidade. O termo γ entra com sinal invertido no coeficiente angular da regressão da variância dependendo de qual for o tipo de "notícia" (erro positivo ou negativo).

O β_k pode ser negativo, o que devolve à variância seu caráter aleatório e oscilatório. E, finalmente, essa especificação permite uma melhor análise da persistência dos choques na variância condicional.

É também observado por Nelson (1990) que o modelo exponencial pode apresentar qualquer valor de correlação condicional entre z_t e $\ln(\sigma_t^2)$. Nos modelos GARCH essa correlação é fixada em zero, já que a mudança em σ_t^2 depende de z_t^2 , que por sua vez não é correlacionado com z_t . Essa característica pode ser uma vantagem se for verdade que mudanças no nível de preços sejam correlacionadas com a volatilidade.

Uma outra extensão interessante do modelo surgiu com Engle, Lilien e Robins (1987), o ARCH on the mean ou ARCH-M. A novidade é que agora a variância condicional afeta a esperança condicional do Y_t , o que é bastante apropriado para um ambiente em que o retorno esperado de um ativo arriscado (sua esperança) depende do seu risco (sua variância). Um modelo mais de acordo com a teoria de finanças usaria a covariância do ativo com a carteira do mercado, no lugar da variância, mas a variância é mais facilmente calculada e pode ser suficiente.

Esse modelo fica especificado como:

(8)
$$Y_t = g(X_{t-1}, \sigma_t^2; \beta) + \varepsilon_t$$

Claro, junto da equação que gera a variância.

Essa pletora de modelos, cada um com pequenas mudanças em comparação com seus predecessores, sugere que séries de finanças apresentam características não muito uniformes ao redor do globo e ao longo do tempo. Issler (1999) aplica alguns dos modelos ao Brasil tentando descobrir qual se aplica melhor à nossa realidade.

Os critérios utilizados são a aderência e a capacidade preditiva. Ao final o autor conclui que os modelos EGARCH (1,1) com distribuição dos erros gaussiana são os melhores no quesito previsão, enquanto o EGARCH (1,1), com distribuição dos erros student-t, apresenta as melhores estatísticas de aderência.

O EGARCH, ainda segundo o autor, pode ter se dado bem com os dados brasileiros devido a um potencial defeito: superestimar a volatilidade, já que os efeitos dos erros ao quadrado na variância são exponenciais. Assim erros defasados grandes podem continuar tendo muito efeito mesmo depois de uma série de erros pequenos. Essa característica é ideal pra uma particularidade das séries brasileiras: apresentar muitos outliers.

Issler (1999) e Bollerslev, Chou And Kroner (1992) discutem brevemente as vantagens que a modelagem ARCH oferece em relação às medidas que

frequentemente são usadas por agentes do mercado. Em suma, as medidas geralmente usadas só seriam adequadas se as séries fossem homocedásticas.

As mais comuns são: (1) Média dos erros ao quadrado obtidos por modelos para a média condicional; (2) Volatilidade implícita nos preços das opções; (3) Diferença entre *high* e *low* entre períodos, (4) A diferença entre *bid* e *ask* ao quadrado sendo proporcional à variância; (5) Heterogeneidade dos retornos de vários ativos em um dado período t.

Um problema sério com os modelos ARCH é a ausência de uma teoria por trás da modelagem. O artigo clássico que tentou lidar com isso foi Nelson (1990), mostrando que os modelos de difusão para finanças podem ser entendidos com um limite do ARCH quando o intervalo de tempo diminui muito.

Mas existem outras abordagens. O efeito de volatilidade agrupada pode ser conseqüência de volume de negociação agrupado ou de um processo de chegada de informações que tenha correlação serial. Ao incluir o volume na equação da variância de um GARCH (1,1) foi obtido um coeficiente não significativo para o erro defasado em Lamoureux and Lastrapes (1990)¹.

Vários autores tentaram identificar variáveis macroeconômicas que contribuíssem para a flutuação da variância, como a taxa de juros nominal em Campbell (1987), ou o efeito dos ciclos de negócios e crises financeiras e bancárias.

¹ Apesar de que, esse procedimento é passível de sérias críticas. Existe correlação entre o volume negociado em t e o preço em t, o que pode enviesar os resultados.